124 research outputs found

    Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder : the ENIGMA adventure

    Get PDF
    Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case–control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case–control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses

    Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets

    Get PDF
    Attention-deficit; Brain asymmetry; Hyperactivity disorderDeficit de atención; Asimetría cerebral; Trastorno de hiperactividadDèficit d’atenció; Asimetria cerebral; Trastorn d'hiperactivitatObjective Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen’s d from −0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait

    Food Security Crop Price Transmission and Formation in Nigeria

    Get PDF
    The three studies in this dissertation explore the current conditions and operations of markets for seven key food security crops (cassava, cowpeas, maize, millet, rice, sorghum, and yams) in Nigeria. Chapter 2 is an empirical analysis of the current agricultural statistics system in Nigeria. A number of sources gather and report agricultural statistics for the country. Since there has not been an agricultural census implemented there for multiple decades, however, there is no objective source for data verification. Therefore, this study uses two additional types of “on the ground information” to assess if agricultural production estimates reflect growing conditions: prices and remote sensing data in the form of the normalized difference vegetation index (NDVI). The results show that existing production estimates are poorly correlated with both prices and the NDVI. Prices and the NDVI data are highly correlated, however. These findings imply that existing production estimates do not reflect growing conditions, and, therefore, are of poor quality. Chapter 3 is a comprehensive analysis of crop price transmission from global and neighbor country prices to Nigerian commercial hub and urban markets, and from commercial hubs to other urban and rural markets within the country. The results show that tradability matters for price transmission, but that tradability varies across crops and scopes of markets. Nigerian urban rice prices are highly correlated with prices on global markets and those in neighboring countries. Coarse grain prices appear disconnected from global markets, however, but move closely with those in neighboring countries. Large margins were estimated for prices of rice imported from global markets (in all regions), and for coarse grains to Southern Nigerian markets only. The existence of large margins implies that there are transactions costs and/or quality premiums that vary systematically with the world price, and/or mark-ups by traders with market power in these markets. While domestic market prices are almost always cointegrated, perfect price transmission is generally found only between commercial hubs and other urban markets. Moreover, long lags were found for price transmission across all scopes of markets, but especially between urban and rural prices in some regions. These results imply that local conditions (e.g., weather) are relatively more important than external market prices for explaining price variation in rural markets, especially in the short-run. Chapter 4 incorporates NDVI data into price formation models to estimate whether observable growing conditions explain price variation in Nigerian food security crop markets. Four issues related to use of NDVI data that exist within the literature are investigated: whether NDVI is a valid proxy for expected production, how NDVI is a proxy for seasonality, the relationship between market size and the area scope used to average NDVI values across space, and if anomalous harvest expectations can change long-run price variation and price relationships between markets. The results show that information on growing conditions is more informative for isolated than interconnected markets. Even for those local prices, however, other non-weather and non-external market price factors are relatively more important for explanation of price variation. An implication of these results is that Nigeria cannot plausibly rely solely on direct imports from global markets to meet short-run demand during future weather shock periods. Thus, storage is required to ensure stability of food security, either for imports or domestically produced surpluses acquired in non-crisis periods. Given the isolation of rural markets, local and on-farm stocks are at least as important as large facilities in commercial hubs. Improvement of village level and on-farm storage systems and elimination of other market distortions that inhibit trade between urban and rural markets would make public storage less needed. The findings on poor quality of agricultural statistics indicate a clear priority to improve agricultural data, to facilitate better planning of any food security strategies. A combination of surveys with remote sensed and crowd sourced data may improve feasibility in the funding constrained environment

    Characterising resting-state functional connectivity in a large sample of adults with ADHD

    Get PDF
    AbstractAttention-deficit/hyperactivity disorder (ADHD) is a common childhood psychiatric disorder that often persists into adulthood. While several studies have identified altered functional connectivity in brain networks during rest in children with ADHD, few studies have been performed on adults with ADHD. Existing studies have generally investigated small samples. We therefore investigated aberrant functional connectivity in a large sample of adult patients with childhood-onset ADHD, using a data-driven, whole-brain approach. Adults with a clinical ADHD diagnosis (N=99) and healthy, adult comparison subjects (N=113) underwent a 9-minute resting-state fMRI session in a 1.5T MRI scanner. After elaborate preprocessing including a thorough head-motion correction procedure, group independent component analysis (ICA) was applied from which we identified six networks of interest: cerebellum, executive control, left and right frontoparietal and two default-mode networks. Participant-level network maps were obtained using dual-regression and tested for differences between patients with ADHD and controls using permutation testing. Patients showed significantly stronger connectivity in the anterior cingulate gyrus of the executive control network. Trends were also observed for stronger connectivity in the cerebellum network in ADHD patients compared to controls. However, there was considerable overlap in connectivity values between patients and controls, leading to relatively low effect sizes despite the large sample size. These effect sizes were slightly larger when testing for correlations between hyperactivity/impulsivity symptoms and connectivity strength in the executive control and cerebellum networks. This study provides important insights for studies on the neurobiology of adult ADHD; it shows that resting-state functional connectivity differences between adult patients and controls exist, but have smaller effect sizes than existing literature suggested

    Gray matter networks associated with attention and working memory deficit in ADHD across adolescence and adulthood

    Get PDF
    Contains fulltext : 231759.pdf (publisher's version ) (Open Access)Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disorder and may persist into adulthood. Working memory and attention deficits have been reported to persist from childhood to adulthood. How neuronal underpinnings of deficits differ across adolescence and adulthood is not clear. In this study, we investigated gray matter of two cohorts, 486 adults and 508 adolescents, each including participants from ADHD and healthy controls families. Two cohorts both presented significant attention and working memory deficits in individuals with ADHD. Independent component analysis was applied to the gray matter of each cohort, separately, to extract cohort-inherent networks. Then, we identified gray matter networks associated with inattention or working memory in each cohort, and projected them onto the other cohort for comparison. Two components in the inferior, middle/superior frontal regions identified in adults and one component in the insula and inferior frontal region identified in adolescents were significantly associated with working memory in both cohorts. One component in bilateral cerebellar tonsil and culmen identified in adults and one component in left cerebellar region identified in adolescents were significantly associated with inattention in both cohorts. All these components presented a significant or nominal level of gray matter reduction for ADHD participants in adolescents, but only one showed nominal reduction in adults. Our findings suggest although the gray matter reduction of these regions may not be indicative of persistency of ADHD, their persistent associations with inattention or working memory indicate an important role of these regions in the mechanism of persistence or remission of the disorder

    Pleiotropic contribution of MECOM and AVPR1A to aggression and subcortical brain volumes

    Get PDF
    Reactive and proactive subtypes of aggression have been recognized to help parse etiological heterogeneity of this complex phenotype. With a heritability of about 50%, genetic factors play a role in the development of aggressive behavior. Imaging studies implicate brain structures related to social behavior in aggression etiology, most notably the amygdala and striatum. This study aimed to gain more insight into the pathways from genetic risk factors for aggression to aggression phenotypes. To this end, we conducted genome-wide gene-based cross-trait meta-analyses of aggression with the volumes of amygdala, nucleus accumbens and caudate nucleus to identify genes influencing both aggression and aggression-related brain volumes. We used data of large-scale genome-wide association studies (GWAS) of: (a) aggressive behavior in children and adolescents (EAGLE, N = 18,988); and (b) Magnetic Resonance Imaging (MRI)-based volume measures of aggression-relevant subcortical brain regions (ENIGMA2, N = 13,171). Second, the identified genes were further investigated in a sample of healthy adults (mean age (SD) = 25.28 (4.62) years; 43% male) who had genome-wide genotyping data and questionnaire data on aggression subtypes available (Brain Imaging Genetics, BIG, N = 501) to study their effect on reactive and proactive subtypes of aggression. Our meta-analysis identified two genes, MECOM and AVPR1A, significantly associated with both aggression risk and nucleus accumbens (MECOM) and amygdala (AVPR1A) brain volume. Subsequent in-depth analysis of these genes in healthy adults (BIG), including sex as an interaction term in the model, revealed no significant subtype-specific gene-wide associations. Using cross-trait meta-analysis of brain measures and psychiatric phenotypes, this study generated new hypotheses about specific links between genes, the brain and behavior. Results indicate that MECOM and AVPR1A may exert an effect on aggression through mechanisms involving nucleus accumbens and amygdala volumes, respectively

    Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders

    Full text link
    The substantial individual heterogeneity that characterizes people with mental illness is often ignored by classical case-control research, which relies on group mean comparisons. Here we present a comprehensive, multiscale characterization of the heterogeneity of gray matter volume (GMV) differences in 1,294 cases diagnosed with one of six conditions (attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, depression, obsessive-compulsive disorder and schizophrenia) and 1,465 matched controls. Normative models indicated that person-specific deviations from population expectations for regional GMV were highly heterogeneous, affecting the same area in <7% of people with the same diagnosis. However, these deviations were embedded within common functional circuits and networks in up to 56% of cases. The salience-ventral attention system was implicated transdiagnostically, with other systems selectively involved in depression, bipolar disorder, schizophrenia and attention-deficit/hyperactivity disorder. Phenotypic differences between cases assigned the same diagnosis may thus arise from the heterogeneous localization of specific regional deviations, whereas phenotypic similarities may be attributable to the dysfunction of common functional circuits and networks

    Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology

    Full text link
    It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability

    Enlarged striatal volume in adults with ADHD carrying the 9-6 haplotype of the dopamine transporter gene DAT1

    Get PDF
    The dopamine transporter gene, DAT1 (SLC6A3), has been studied extensively as a candidate gene for attention-deficit/hyperactivity disorder (ADHD). Different alleles of variable number of tandem repeats (VNTRs) in this gene have been associated with childhood ADHD (10/10 genotype and haplotype 10-6) and adult ADHD (haplotype 9-6). This suggests a differential association depending on age, and a role of DAT1 in modulating the ADHD phenotype over the lifespan. The DAT1 gene may mediate susceptibility to ADHD through effects on striatal volumes, where it is most highly expressed. In an attempt to clarify its mode of action, we examined the effect of three DAT1 alleles (10/10 genotype, and the haplotypes 10-6 and 9-6) on bilateral striatal volumes (nucleus accumbens, caudate nucleus, and putamen) derived from structural magnetic resonance imaging scans using automated tissue segmentation. Analyses were performed separately in three cohorts with cross-sectional MRI data, a childhood/adolescent sample (NeuroIMAGE, 301 patients with ADHD and 186 healthy participants) and two adult samples (IMpACT, 118 patients with ADHD and 111 healthy participants; BIG, 1718 healthy participants). Regression analyses revealed that in the IMpACT cohort, and not in the other cohorts, carriers of the DAT1 adult ADHD risk haplotype 9-6 had 5.9 % larger striatum volume relative to participants not carrying this haplotype. This effect varied by diagnostic status, with the risk haplotype affecting striatal volumes only in patients with ADHD. An explorative analysis in the cohorts combined (N = 2434) showed a significant gene-by-diagnosis-by-age interaction suggesting that carriership of the 9-6 haplotype predisposes to a slower age-related decay of striatal volume specific to the patient group. This study emphasizes the need of a lifespan approach in genetic studies of ADHD
    corecore